Proyeksi Harga Saham Perbankan BUMN Dengan Metode Trend Analysis
DOI:
https://doi.org/10.53494/jira.v11i1.833Kata Kunci:
Stock Price Forecasting, Trend Analysis, BUMN Banks, MAPE, MAD, MSDAbstrak
The capital market plays a crucial role in economic growth by serving as a platform for long-term financial instruments, including stocks, bonds, and mutual funds. Stock price movements are influenced by various factors, both internal and external, making accurate forecasting essential for investors to minimize risks and optimize returns. This study aims to forecast the stock prices of state-owned banks (BUMN) in Indonesia using the Trend Analysis method, specifically employing linear, quadratic, exponential growth, and S-curve models. The research utilizes historical closing price data from September 2024 to January 2025, covering four major state-owned banks: Bank Rakyat Indonesia (BBRI), Bank Mandiri (BMRI), Bank Negara Indonesia (BBNI), and Bank Tabungan Negara (BBTN). The analysis is conducted using Minitab software, and the best forecasting model is determined based on the lowest values of Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), and Mean Squared Deviation (MSD). The results indicate that the quadratic model provides the most accurate forecasts for all four banks, capturing non-linear trends in stock price movements. The findings reveal a consistent downward trend in stock prices across all BUMN banks, highlighting potential market pressures and economic conditions that may affect future performance. This suggests that investors should approach short- to medium-term investments with caution. Additionally, while trend analysis offers valuable insights into historical patterns, integrating fundamental and technical analysis is recommended to enhance investment decision-making.
Referensi
Bank Indonesia. (2024). Daftar Lembaga Berizin. Jakarta: Bank Indonesia. https://www.bi.go.id/id/layanan/informasi-perizinan/default.aspx
Fitriani, R., Ratih, N. R., & Isnaniati, S. (2024). Analisis Peramalan Harga Saham Dengan Metode Arima Terhadap Keputusan Investasi Pada Perusahaan Perbankan Dalam Indeks LQ45. JCA (Jurnal Cendekia Akuntansi), 5(1), 75. https://doi.org/10.32503/akuntansi.v5i1.5311
Htun, H. H., Biehl, M., & Petkov, N. (2024). Forecasting relative returns for S&P 500 stocks using machine learning. Financial Innovation, 10(1). https://doi.org/10.1186/s40854-024-00644-0
Juanda, B., & Junaidi. (2012). Ekonometrika Deret Waktu: Teori dan Aplikasi. IPB Press.
Julian, R., & Pribadi, M. R. (2021). Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM). JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(3), 1570–1580. https://doi.org/10.35957/jatisi.v8i3.1159
Mohan, M., Kishore Raja, P. C., Velmurugan, P., & Kulothungan, A. (2023). Holt-Winters Algorithm to Predict the Stock Value Using Recurrent Neural Network. Intelligent Automation and Soft Computing, 35(1), 1151–1163. https://doi.org/10.32604/iasc.2023.026255
Ningsih, N. R., Azis, M., & Hasyim, S. H. (2024). Pengaruh Tingkat Inflasi Terhadap Harga Saham Bank BUMN yang Terdaftar di Bursa Efek Indonesia. Future Academia : The Journal of Multidisciplinary Research on Scientific and Advanced, 2(4), 550–561. https://doi.org/10.61579/future.v2i4.192
Otoritas Jasa Keuangan. (2023). Buku Saku Pasar Modal. Jakarta: OJK; Otoritas Jasa Keuangan.
Partomuan, F. T., & Simamora, S. C. (2021). Pengaruh Cr, Der Dan Roe Terhadap Harga Saham Pada Perusahaan Sub Sektor Konstruksi Yang Terdaftar Di Indeks Idx Value 30 Periode 2015-2019. Jimen Jurnal Inovatif Mahasiswa Manajemen, 1(3), 242–255.
Pratama, K. J. (2024). Menuju Ekonomi Berkeadilan: Optimalisasi Sektor Perbankan BUMN. Kementerian Sekretariat Negara Republik Indonesia.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Fatiya Maliha, Diah Anggeraini Hasri

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.